Catrel Workshop, École Polytechnique — October 1-2, 2015

New record in \mathbb{F}_{p^3}

R. Barbulescu P. Gaudry A. Guillevic F. Morain

Context

Notation

p17dd42: DLP in $\mathbb{F}_{p^{17}}$ when p has 42 decimal digits.

- ▶ In 2000 Joux proposed a one round key exchange protocol based on pairings, which requires that DLP in \mathbb{F}_{p^n} is strong when n > 1.
- ▶ In 2006 Joux Lercier Smart Vercauteren made a record for p3dd40.
- ▶ In August 2014 B. Gaudry Guillevic Morain made a record in p2dd90.
- ▶ One week ago, B. Gaudry Guillevic Morain finished computations in p4dd30.
- ▶ New: B. Gaudry Guillevic Morain finished computations in p3dd52.

Which method?

Experiments

- Galois is important \Rightarrow Conjugation or JLSV₁;
- p3dd10, p3dd20, p3dd30, p3dd40 showed that conjugation has a smaller slope.

Record details (1/3)

CADO

We modified the code of sieve, but rely heavily on CADO.

Goal

Field: GF(p^3) with p = 2350818717208688087749020262268575297768527372596629(512 bits as a whole, $p = \lfloor 2^{169}\pi \rfloor + 94530$.) Goal: DL in subgroup of order $\ell = \frac{p^2 + p + 1}{3}$.

Polynomials

- $f = 27450870371418374920579406x^3 + 9495676108810921345560989x^2 72856935005444203416177229x 27450870371418374920579406$
- $g = x^6 3x^4 + 4x^3 + 12x^2 + 6x + 1.$
 - Conjugation method in Magma (negligible time);
 - Both have automorphism $x \mapsto -1 1/x$ of order three.

Record details (2/3)

Sieving

- special-q on both sides (balanced norms).
- took advantage of Galois action (saved factor of 3).
- factor base bound: 50M.
- large prime bound: 27 bits (allow 2 on each side).
- I = 15.
- Total CPU-time: 850 core-days.

Filtering

- 26 M raw rels
- 15.7M single rels (40% duplicates)
- Final matrix: 3.72 M rows/cols, 150 coef/row.

Schirokauer maps

- due to improvement in Emmanuel Thomé's talk, their cost is zero;
- two on each side (in other cases 5+2).

Record details (3/3)

Linear algebra

- Block-Wiedemann algorithm. Used 8 sequences in parallel, 4 of them having SM vector as input. Typical setting: 8 blocks of 4 nodes of 16 cores, each contributing to one sequence.
- time
 - Krylov sequence: 700,000 iterations per sequence, at 0.8 s / it.
 - Berlekamp-Massey step: 7 hours on 64 cores.
 - Mksol: 460,000 iterations per sequence, at 0.8 s / it.
 - Total linalg cpu-time: 5,500 core-days

Individual logarithm

- smoothing (boot) using the improvement of Aurore's talk.
- descent (parameters needed)

 $\log(t+2) = 220967782594325719456867310220775867051293609697188553541062020138225929626931765669096247279660395604$

in an unknown base (second descent needed).