Catrel Workshop, École Polytechnique - October 1-2, 2015

New record in $\mathbb{F}_{p^{3}}$

R. Barbulescu P. Gaudry A. Guillevic F. Morain

Institut de Mathématiques
de

Context

Notation

p17dd42: DLP in $\mathbb{F}_{p^{17}}$ when p has 42 decimal digits.

- In 2000 Joux proposed a one round key exchange protocol based on pairings, which requires that DLP in $\mathbb{F}_{p^{n}}$ is strong when $n>1$.
- In 2006 Joux Lercier Smart Vercauteren made a record for p3dd40.
- In August 2014 B. Gaudry Guillevic Morain made a record in p2dd90.
- One week ago, B. Gaudry Guillevic Morain finished computations in p4dd30.
- New: B. Gaudry Guillevic Morain finished computations in p3dd52.

Which method?

Experiments

- Galois is important \Rightarrow Conjugation or JLSV_{1};
- p3dd10, p3dd20, p3dd30, p3dd40 showed that conjugation has a smaller slope.

Record details (1/3)

CADO

We modified the code of sieve, but rely heavily on CADO.

Goal

Field: $\operatorname{GF}\left(p^{3}\right)$ with $p=2350818717208688087749020262268575297768527372596629$ (512 bits as a whole, $p=\left\lfloor 2^{169} \pi\right\rfloor+94530$.)
Goal: DL in subgroup of order $\ell=\frac{p^{2}+p+1}{3}$.

Polynomials

$f=27450870371418374920579406 x^{3}+9495676108810921345560989 x^{2}$
$-72856935005444203416177229 x-27450870371418374920579406$
$g=x^{6}-3 x^{4}+4 x^{3}+12 x^{2}+6 x+1$.

- Conjugation method in Magma (negligible time);
- Both have automorphism $x \mapsto-1-1 / x$ of order three.

Record details (2/3)

Sieving

- special-q on both sides (balanced norms).
- took advantage of Galois action (saved factor of 3).
- factor base bound: 50M.
- large prime bound: 27 bits (allow 2 on each side).
- $\mathrm{I}=15$.
- Total CPU-time: 850 core-days.

Filtering

- 26 M raw rels
- 15.7 M single rels (40% duplicates)
- Final matrix: 3.72 M rows/cols, 150 coef/row.

Schirokauer maps

- due to improvement in Emmanuel Thomé's talk, their cost is zero;
- two on each side (in other cases $5+2$).

Record details (3/3)

Linear algebra

- Block-Wiedemann algorithm. Used 8 sequences in parallel, 4 of them having SM vector as input. Typical setting: 8 blocks of 4 nodes of 16 cores, each contributing to one sequence.
- time
- Krylov sequence: 700,000 iterations per sequence, at $0.8 \mathrm{~s} / \mathrm{it}$.
- Berlekamp-Massey step: 7 hours on 64 cores.
- Mksol: 460,000 iterations per sequence, at $0.8 \mathrm{~s} / \mathrm{it}$.
- Total linalg cpu-time: 5,500 core-days

Individual logarithm

- smoothing (boot) using the improvement of Aurore's talk.
- descent (parameters needed)
$\log (t+2)=220967782594325719456867310220775867051293609697188553541062020138225929626931765669096247279660395604$
in an unknown base (second descent needed).

